REFERENZHANDBUCH

DualScat Ex

SIGRIST In-Line Trübungsmessgerät

mit SIREL SMD/ Ex

ESIGRIS PROCESS-PHOTOMETER CH-6373 Ennetbürgen Schweiz

SIGRIST-PHOTOMETER AG Telefon: Hofurlistrasse 1

Fax: E-Mail:

+41 (0)41 624 54 54 +41 (0)41 624 54 55 info@photometer.com Internet: www.photometer.com

```
Dokumentnummer: 10119D
```

Inhalt

1	Mechanischer Aufbau 1.1 Aufbau des Photometers 1.2 Aufbau des Bedienungsgeräts SIREL SMD	.1 .1 .2
2	 Elektrische Anschlüsse	.3 .4 .5 .6 .6 .8 10
3	Beschreibung der Menüfunktionen 3.1 Einführung 3.2 Menü: *SENSOR CHECK* 3.3 Menü: *NACHKALI* 3.4 Menü: *MESSBEREICH/GRENZWERTE* 3.4.1 Option: >GW< 3.4.2 Option: >Messber, 90{25} <	12 12 12 12 12 12
	 3.5 Menü: *HANDBETRIEB*	13 13 13 13 14 14
	3.6 Menü: *KONFIGURIEREN* 3.6.1 Option: >Sprache 3.6.2 Option: >Steuerung 3.6.3 Option: >Strombereich 3.6.3 Option: >Max. Strom 3.6.4 Option: >Max. Strom 3.6.5 Option: >Strom Service 3.6.6 Option: >Strom Fehler 3.6.7 Option: >Integration 3.6.8 Option: >MB-Hysterese 3.6.9 Option: >Relais 1 3.6.10 Option: >Relais 2 3.6.11 Option: >Check Inter. 3.6.12 Option: >Betr.Zwang 3.6.13 Option: >Zugriffscode	14 15 15 16 16 17 18 18 19
	3.6.14 Option: > Zugriffscode <	20 20 20 22 25 25 25 25 25

	3.10.4 Information: -Mess90{Mess25}	
	3.10.5 Information: – Innentemp.–	
	3.10.6 Information: -LED-Temp	
	3.10.7 Information: -Max-Temp	
	3.11 Menü: *ABGLEICH INFO*	
	3.11.1 Information: Nachk1 Nachk6	
	3.11.2 Information: -Moni/Mess 90{25}	
	3.12 Menü: *FEUCHTE INFO*	27
	3.12.1 Information: –Feuchtewert–	27
	3.12.2 Information: -Feuchtgrenzw	27
	3.12.3 Information: –Feuchtabgl–	27
	3.12.4 Information: -Feuchtabgl- (Wert)	27
4	Verwendung eines Buskopplers	
	4.1 Einführung	28
	4.2 Modbus	
	4.3 Profibus DP	29
5	Reparaturen	
	5.1 Allgemeine Hinweise	
	5.2 Auswechseln der Folientastatur am SIREL SMD	
	5.3 Auswechseln des Bedienungsgeräts SIREL SMD/ Ex	32
	5.4 Auswechseln des Steuerkabels	32
	5.5 Auswechseln des Photometers	
6	B Herstellen einer Formazin-Standardsuspension	
7	Anhang	
	7.1 Hilfstabelle zur Ermittlung der Stützwerte	
8	Index	39

Vorwort

Die vorliegende Betriebsanleitung beschreibt die Grundfunktionen zur Bedienung des DualScat Ex. Sie richtet sich an alle Personen, die für den Betrieb des Geräts zuständig sind.

Bedienen Sie das Gerät nur, wenn Sie mit dem Inhalt der Betriebsanleitung vertraut sind. Insbesondere das Kapitel über die Sicherheitsvorschriften ist vorgängig zu studieren.

Weitere Dokumen-	DokNr.	Titel	Inhalt
tationen	10118D	Betriebsanleitung	Angaben zu Inbetriebnahme, Betrieb und
			Wartung
	10121D	Kurzanleitung	Wichtigste Funktionen sowie komplette Me-
			nüstruktur
	10105D	Datenblatt	Bestellinformationen und Technische Daten
			zum DualScat und DualScat Ex
	10120D	Serviceanleitung	Reparatur- und Umbauanleitungen für Servi-
			cetechniker
	11044D	Betriebsanleitung	Enthält weiterführende Informationen zum
		SIREL Ex	Bedienungsgerät SIREL Ex

Verwendete Sym- bole	\wedge	Wichtige Hinweise
	(Sig	Orientierungshilfe
	0	Zusatzinformation
	\bigwedge	Lebensgefährliche Spannung
		Achtung Explosionsgefahr (LEBENSGEFAHR!)

Referenzhandbuch DualScat Ex

1 Mechanischer Aufbau

1.1 Aufbau des Photometers

Abbildung 1: Aufbau des Photometers.

1.2 Aufbau des Bedienungsgeräts SIREL SMD

0

Da dem Kunden beim Gebrauch eines SIREL Ex dieser Bereich nicht zugänglich ist, wird an dieser Stelle auf ein Übersichtsbild verzichtet.

Schalter	Nr.	Standard	Funktion	\rightarrow Kapitel
S1	1	OFF	Masseverbindung der internen 5 V- Spannungsquelle	2
	2	ON	Abschlusswiderstand Buskopplung	2.5
S2	1	OFF	Umschaltung der Slavenummer für Buskopplung	2.5
	2	OFF	NICHT VERÄNDERN - nur für Werks- kontrolle	
	3	OFF	NICHT VERÄNDERN - unbenutzt	
	4	OFF	NICHT VERÄNDERN - unbenutzt	

Tabelle 1: Funktionen der Printschalter

2 Elektrische Anschlüsse

 Λ

Im Innern des Bedienungsgeräts können Teile unter lebensgefährlicher Spannung stehen. Stellen Sie vor dem Öffnen sicher, dass keine spannungsführenden Leitungen angeschlossen sind.

Ein detailliertes Anschlussschema zum Bedienungsgerät finden Sie in Kapitel 7.

2.1 Messbereichsausgänge

Die Ausgänge sind als binärcodierte Halbleiterausgänge mit offenen Kollektoren (open collector) ausgeführt. Sie sind mittels Optokoppler gegenüber allen anderen Anschlüssen bis 50 V galvanisch getrennt.

Codierung:					
2 ²	2 ¹	2 ⁰	Messbereich (Standard)		
L	L	L	1 (0 2000 NTU)		
L	L	H	2 (0 500 NTU)		
L	Н	L	3 (0 100 NTU)		
L	Н	Н	4 (0 50 NTU)		
Н	L	L	5 (0 20 NTU)		
Н	L	Н	6 (0 10 NTU)		
Н	Н	L	7 (0 5 NTU)		
Н	Н	Н	8 (0 2 NTU)		
L = niederohmig (Low)					

Abbildung 3: Messbereichsausgänge im Bedienungsgerät

Mit dem Printschalter S1/1 (\rightarrow auch Kapitel 1.2) wird eine interne Spannungsquelle an die gemeinsamen Anschlüsse der Messbereichsausgänge geschaltet. So kann eine externe Auswertung der Ausgänge ohne zusätzliche Spannungsquelle realisiert werden.

H = hochohmig (High-Z)

Eine einfache Möglichkeit, den aktuellen Messbereich mit einem Linienschreiber aufzuzeichnen, besteht darin, ein Stromsignal in Abhängigkeit des Messbereichs zu generieren:

Das Beispiel ist ausgelegt für eine Bürde von 10 $\Omega.$ Für andere Bürden müssen die Widerstandswerte neu berechnet werden.

Codierung:				
mA (ca.)	Messbereich (Standard)			
0	1 (0 2000 NTU)			
2	2 (0 500 NTU)			
4	3 (0 100 NTU)			
6	4 (0 50 NTU)			
8	5 (0 20 NTU)			
10	6 (0 10 NTU)			
12	7 (0 5 NTU)			
14	8 (0 2 NTU)			

Printschalter S1/1 geschlossen (ON) Die Nummern in Klammern gelten für den Ausgang 2.

Abbildung 4: Signalisierung des Messbereichs mittels Stromsignal

2.2 Eingänge zur Messbereichswahl

Die Eingänge sind als binärcodierte Optokopplereingänge ausgeführt. Alle Optokopplereingänge sind gemeinsam gegenüber den anderen Anschlüssen bis 50 V galvanisch getrennt.

Die Nummern in Klammern gelten für den Ausgang 2.

Codierung:					
2 ²	2 ¹	2 º	Messbereich (Standard)		
L	L	L	1 (0 2000 NTU)		
L	L	Н	2 (0 500 NTU)		
L	Н	L	3 (0 100 NTU)		
L	Н	Н	4 (0 50 NTU)		
Н	L	L	5 (0 20 NTU)		
Н	L	Н	6 (0 10 NTU)		
Н	Н	L	7 (0 5 NTU)		
Н	Н	Н	8 (0 2 NTU)		
L = Low (0 V) H = High (+5 V)					

Abbildung 5: Eingänge zur Messbereichswahl im Bedienungsgerät

Mit dem Printschalter S1/1 (\rightarrow auch Kapitel 1.2) wird eine interne Spannungsquelle an die gemeinsamen Anschlüsse der Eingänge geschaltet. So kann eine externe Ansteuerung der Eingänge ohne zusätzliche Spannungsquelle realisiert werden.

SIREL	MR In 1(2)	Cod	lierun	g:	
10		S ²	S ¹	Sº	Messbereich (Stan- dard)
14(29)	14(29)	0	0	0	1 (0 2000 NTU)
		0	0	С	2 (0 500 NTU)
15(30)		0	С	0	3 (0 100 NTU)
14(21)	16(31) 51/1	0	С	С	4 (0 50 NTU)
10(31)		С	0	0	5 (0 20 NTU)
S1/1		С	0	С	6 (0 10 NTU)
		С	С	0	7 (0 5 NTU)
Printschalter S1/1 geschlossen (ON)		С	С	С	8 (0 2 NTU)
für den Ausga	C = O =	gesch offen	lossen	(closed)	

Mit drei Schaltern lässt sich der Messbereich anwählen:

Abbildung 6: Externe Messbereichswahl mittels drei Schaltern

0

2.3 Eingang zum Fernauslösen des Sensor-Checks

Der Eingang ist als Optokopplereingang ausgeführt. Alle Optokopplereingänge sind gemeinsam gegenüber den anderen Anschlüssen bis 50 V galvanisch getrennt.

Abbildung 7: Eingang zum Fernauslösen des Sensor-Checks

Mit dem Printschalter S1/1 (\rightarrow auch Kapitel 1.2) wird eine interne Spannungsquelle an die gemeinsamen Anschlüsse der Optokopplereingänge geschaltet. So kann eine externe Ansteuerung des Eingangs ohne zusätzliche Spannungsquelle realisiert werden. Mit einem Schalter kann der Sensor-Check ausgelöst werden:

Printschalter S1/1 geschlossen

Abbildung 8: Sensor-Check mittels externem Schalter.

Damit ein Sensor-Check stattfindet, muss der Schalter für mindestens 1s geschlossen sein.

2.4 Verlängerung des Verbindungskabels

Das Verbindungskabel zum Photometer ist photometerseitig fest eingebaut und intern an Klemmen geführt.

Die Standardkabellänge beträgt 5 m. Für andere Kabellängen kann dieses vom Kunden ausgewechselt werden (\rightarrow Kapitel 5.4).

2.5 Systemerweiterungen

2.5.1 Zweites Bedienungsgerät SIREL SMD

Das Bedienungsgerät SIREL SMD und allfällige Zusatzkomponenten dürfen nicht in explosionsgefährdeten Bereichen installiert und betrieben werden.

Abbildungen 9+10: Betrieb mit zwei Bedienungsgeräten.

Mit den Printschaltern S1/2 bzw. S2/1 (\rightarrow Kapitel 1.2) werden die Bedienungsgeräte für diese Betriebsart konfiguriert.

Stellung der Print- schalter	Die Signalausgänge beider Bedienungsgeräte können gleichzeitig genutzt wer- den, aber nur die Signaleingänge desjenigen Geräts, bei dem der Printschalter S2/1 = OFF ist.			
	Der Messwertausgang (0/420mA) desjenigen Bedienungsgeräts, bei dem der Printschalter S2/1 = OFF ist, ist nicht auf Fehlfunktion überwacht.			
Signalausgänge	Alle Signalausgänge verhalten sich in beiden Bedienungsgeräten gleich.			
Bedienung	Mit beiden Bedienungsgeräten kann das Photometer vollständig über die Tasta- tur bedient werden.			
Anzeigen	Beide Bedienungsgeräte zeigen immer das gleiche an.			
Umschalten in den Servicebetrieb	Wird ein Bedienungsgerät in den Servicebetrieb geschaltet, sind die Tasten des anderen Geräts gesperrt.			
Konfiguration	Die Einstellungen der Optionen werden im Photometer gespeichert. Somit kön- nen die beiden Bedienungsgeräte nicht individuell konfiguriert werden. Beide Bedienungsgeräte müssen mit Netzspannung versorgt werden.			

2.5.2 Buskoppler

Das Bedienungsgerät SIREL SMD und allfällige Zusatzkomponenten (Buskoppler) dürfen nicht in explosionsgefährdeten Bereichen installiert und betrieben werden.

Pos.	Bezeichnung
1	Anschluss zum Bediengerät
2	Anschluss zu Pro- zessleitsystem
3	Einstellen der Slavenummer
4	Speisung 24 VDC (vom Bedienungs- gerät)
5	Verbindungskabel

Abbildung 11: Buskoppler

Abbildungen 12: SIREL SMD Betrieb mit Buskoppler.

Variante mit SIREL Ex

Variante mit SIREL SMD

Abbildungen 13:SIREL Ex Betrieb mit Buskoppler.

Abbildungen 14:SIRELSMD/ Ex Betrieb mit Buskoppler.

Mehr Informationen zum Betrieb mit Buskoppler finden Sie in Kapitel 4.

2.5.3 Zwei Bedienungsgeräte und Buskoppler

Das Bedienungsgerät SIREL SMD und allfällige Zusatzkomponenten dürfen nicht in explosionsgefährdeten Bereichen installiert und betrieben werden.

Abbildungen 15+16: Betrieb mit zwei Bedienungsgeräten und Buskoppler.

Mehr Informationen zum Betrieb mit zwei Bedienungsgeräten finden Sie in Kapitel 2.5.1. Mehr Informationen zum Betrieb mit Buskoppler finden Sie in Kapitel 4.

2.5.4 BUS-Transmitter und Netzgerät SITRA

Das Bedienungsgerät SIREL SMD und allfällige Zusatzkomponenten dürfen nicht in explosionsgefährdeten Bereichen installiert und betrieben werden.

Anstelle eines lokalen Bedienungsgeräts kann das SITRA zum Einsatz kommen. Das SITRA

- stellt eine lokale Spannungsversorgung für das Photometer zur Verfügung
- dient dem Anschluss an eine MODBUS kompatible Schnittstelle
- kann temporär mit einem lokalen SIGRIST-Bedienungsgerät SIREL verbunden werden (z.B. für Wartungsarbeiten)
- ist f
 ür den Betrieb mit dem SIGRIST-Mehrkanalbedienungsger
 ät SIBUS zwingend erforderlich (z.B. wenn mehrere Photometer mit einem Bedienungsger
 ät betrieben werden).

Abbildungen 17+18: Betrieb mit SITRA und SIREL für grosse Distanzen.

3 Beschreibung der Menüfunktionen

3.1 Einführung

Es gibt insgesamt 13 bis 15 Menüs, welche jeweils eine oder mehrere Optionen enthalten, die eingesehen oder verändert werden können.

Je nach Gerät (Einwinkelgerät 90°, Einwinkelgerät 25°, Zweiwinkelgerät) weichen die Menüs/Optionen, welche den Messwinkel betreffen, von der hier beschriebenen Struktur leicht ab. In der folgenden Beschreibung wird deshalb die Angabe des Messwinkels der betroffenen Menüs/Optionen mit der geschweiften Klammer {} dargestellt.

```
Beispiel:
```

In dieser Dokumentation	bedeutet in Ihrem Gerät
>Abgl. Soll 90{25}<	> Abgl. Soll 90<
	oder
	> Abgl. Soll 25<
	oder beides

ī

→ Die werkseitigen Vorgabewerte sind jeweils fett dargestellt.

3.2 Menü: *SENSOR CHECK*

Durchführen eines Sensor-Checks . Das Vorgehen ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Durchführen eines Sensor-Checks").

3.3 Menü: *NACHKALI*

Nachkalibrieren des Photometers mittels Kontrolleinheit oder Formazin. Das Vorgehen ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Nachkalibrieren des Photometers").

3.4 Menü: *MESSBEREICH/GRENZWERTE*

3.4.1 Option: >GW...<

Optionen zum Einstellen der Grenzwerte. Das Vorgehen ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Einstellen der Grenzwerte").

3.4.2 Option: >Messber. 90{25}<

Einstellen des Messbereichs. Das Vorgehen ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Einstellen des Messbereichs").

3.5 Menü: *HANDBETRIEB*

3.5.1 Option: >Stromquelle<

Messwertausgang testen des Messwertausgangs durch Einstellen eines definierten Stromwerts. Nach Beenden des Servicebetriebs wird wieder der vorherige Messwert ausgegeben.

Тур	Funktion, temporär veränderbar		
Werte	0 , 4, 10, 20 mA	Wert des Messwertausga	ings
Mehr Info	Messwertausgang		Betriebsanleitung
	Strombereich des Messwertausgangs		Kapitel 3.6.3

3.5.2 Option: >Relais 1<

Relaisfunktion 1
testenTesten der Funktion von Relais 1 durch manuelles Ein-/Ausschalten. Nach Be-
enden des Servicebetriebs übernimmt Relais 1 wieder seine bestimmungsge-
mässe Aufgabe.

Тур	Funktion, temporär veränderbar		
Werte	Aus	Relais 1 deaktiviert (stromlos) = schen Klemme 4 und 6	Kurzschluss zwi-
	Ein	Relais 1 aktiviert (bestromt) = Ku Klemme 5 und 6.	urzschluss zwischen
Mehr Info	Anschliessen der Relaisausgänge Betriebsanlei		Betriebsanleitung

3.5.3 Option: >Relais 2<

Relaisfunktion 2 testen der Funktion von Relais 2 durch manuelles Ein-/Ausschalten. Nach Beenden des Servicebetriebs übernimmt Relais 2 wieder seine bestimmungsgemässe Aufgabe.

Тур	Funktion, temporär veränderbar		
Werte	Aus	Relais 2 deaktiviert (stromlos) = schen Klemme 7 und 9	Kurzschluss zwi-
	Ein	Relais 2 aktiviert (bestromt) = Ko Klemme 8 und 9	urzschluss zwischen
Mehr Info	Anschliessen der Relaisausgänge Betriebsanle		Betriebsanleitung

3.5.4 Option: >MB Info<

Messwertausgänge testen Testen der Messbereichsausgänge durch manuelles Setzen auf einen bestimmten Wert. Diese Funktion wirkt nur auf die Signalausgänge (beim Zweiwinkelgerät beide Ausgänge), der aktuelle Messbereich im Photometer wird nicht verändert. Nach Beenden des Servicebetriebs geben die Ausgänge wieder den aktuellen Messbereich aus.

Тур	Funktion, temporär veränderbar		
Werte	18	Messbereich, der an den Messbereichsausgängen ausgegeben wird.	
Mehr Info	Anschliessen der Messbereichsausgänge Kapitel		Kapitel 2.1

3.5.5 Option: >Dauerlicht<

.

Messlicht manuell einschalten

Einschalten des Messlichts zu Testzwecken oder zur Fehlereingrenzung. Im Servicebetrieb ist die Lichtquelle normalerweise ausgeschaltet. Nach Verlassen dieser Option wird das Messlicht ausgeschaltet.

Тур	Funktion, temporär veränderbar		
Werte	Aus	Das Messlicht ist ausgeschaltet (Servicebetrieb).	
	Ein	Das Messlicht ist eingeschaltet (Tes	stbetrieb).
Mehr Info	Störungsbehebung Be		Betriebsanleitung

3.6 Menü: *KONFIGURIEREN*

3.6.1 Option: >Sprache<

Einstellen der Sprache für Meldungen und Benutzerführung. Das Vorgehen ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Einstellen der Landessprache").

3.6.2 Option: >Steuerung<

Primäres Steuergerät Einstellen des primären Steuergeräts für das Photometer. Diese Option wird für die externe Steuerung des Geräts über die serielle Schnittstelle benötigt.

Тур	Parameter, veränderbar		
	SIREL	Die Steuerung des Photometers geschieht <i>aus-</i> <i>schliesslich</i> über das angeschlossene Bedie- nungsgerät SIREL.	
Werte	Buskoppler	oppler Die Steuerung des Photometers gesteinen Buskoppler, welcher an die se Schnittstelle angeschlossen ist, oder angeschlossene Bedienungsgerät. W diese Option einstellen, müssen Sie des Buskopplers angeben (→ Kapite	
	Buskoppler		Kapitel 2.5.2
Mehr Info	Einstellen des Buskopplertyps		Kapitel 3.6.13
	Verwenden eines Buskopplers		Kapitel 4

3.6.3 Option: >Strombereich<

Messwertausgang einstellen

Einstellen des Strombereichs für den Messwertausgang. Der Ausgang wird auf den jeweils aktuellen Messbereich skaliert.

Тур	Parameter, veränderbar		
Werte	0 4 mA	0% Messwert = 4 mA, 100% Messwert = 20 mA	
	020 mA	0% Messwert = 0 mA, 100% Messwert = 20 mA	
Mehr Info	Anschliessen o 0/420mA	des Messwertausgangs Betriebsanleitung	
	Einstellen des	Messbereichs Kapitel 3.4.2	

3.6.4 Option: >Max. Strom<

Max. Stromwert am Messwertausgang einstellen Einstellen des höchstmöglichen Stromwerts am Messwertausgang. Stromwerte über 20.0 mA entsprechen mehr als 100% Messwert des aktuellen Messbereichs.

Тур	Parameter, veränderbar		
Werte	20.0 25.0 mA	Maximaler Ausgangsstrom in mA.	
Mehr Info	Anschliessen des Messwertausgangs 0/420mA Betriebsanleitu		

3.6.5 Option: >Strom Service<

Messwertausgang im Servicebetrieb einstellen Einstellen Messwertausgangs im Servicebetrieb (kein regulärer Messwert verfügbar).

Тур	Parameter, veränderbar		
Werte	Letzter Wert	Der Messwertausgang bleibt währ vicebetriebs auf dem letzten gültig stehen (einfrieren).	rend des Ser- gen Messwert
	0 Wert	Der Messwertausgang geht während des Ser- vicebetriebs auf den Wert, welcher dem Messwert 0% entspricht. Dieser Wert ist ab- hängig vom Strombereich.	
Mehr Info	Anschliessen o 0/4 mA	des Messwertausgangs Bet	riebsanleitung
	Einstellen des Messwertausg	Strombereichs für den Jang	Kapitel 3.6.3

3.6.6 Option: >Strom Fehler<

Einstellen des Messwertausgangs bei Störung.

Тур	Parameter, veränderbar		
Werte	0.0 4.0 mA	Stromwert des Messwertau Störung im Gerät auftritt.	isgangs wenn eine
	Anschl. des Messwertausgangs 0/4 mA		Betriebsanleitung
Mehr Info	Einstellen des Strombereichs für den Messwertausgang		Kapitel 3.6.3

3.6.7 Option: >Integration<

Integrationszeit einstellen

Einstellen der Integrationszeit für die Messwertbildung. Schwankungen im Messwert lassen sich durch Integration über eine bestimmte Zeit glätten, so dass daraus ein trägerer, dafür aber genauerer Messwert resultiert. Die Integrationszeit bestimmt die Stärke der Glättung:

a) Originalsignal

b) Kleine Integrationszeit

c) Grosse Integrationszeit

Abbildung 19: Auswirkung der Integrationszeit auf das Messignal

Die Integration im Photometer geschieht über zwei Besselfilter 2. Ordnung. Die eingestellte Integrationszeit entspricht der Sprungantwort des Messwerts von 10% bis 90% (\rightarrow Abbildung 20):

Abbildung 20: Sprungantwort des Messwertsignals

Тур	Parameter, veränderbar		
Werte	1, 10 , 60, 600 s	Integrationszeit in Sekunden.	
Mehr Info	Anschliessen des Messwertausgangs Betriebs		Betriebsanleitung

3.6.8 Option: >MB-Hysterese<

Schwellwert für den nächst tieferen Messbereich einstellen Einstellen des Schwellwerts für die Umschaltung in den nächst tieferen Messbereich. Diese Option ist nur bei automatischer Messbereichsumschaltung von Bedeutung.

Die Umschaltung in den nächst tieferen (empfindlicheren) Messbereich erfolgt, sobald der Messwert die eingestellte Hysterese x dieses Messbereichs unterschreitet (\rightarrow Abbildung 21). Erreicht der Messwert das obere Ende eines Messbereichs (100% Messwert) wird in den nächst höheren (unempfindlicheren) Bereich umgeschaltet.

Abbildung 21: Hysterese bei der automatischen Messbereichsumschaltung.

Тур	Parameter, veränderbar			
Werte	090%	Hysterese in %. Werksvorgabe = 10 %		
Mehr Info	Einstellen des Messbereichs (auch automatische Umschaltung) Betriebsanleitung		Betriebsanleitung	
	Einstellen d	er Messbereiche	Betriebsanleitung	

3.6.9 Option: >Relais 1<

ī

Einstellen der Relaisfunktionen 1 Einstellen der Funktionen für Relais 1. Die Funktionen der zwei im Bedienungsgerät eingebauten Relais können frei programmiert werden. Wählen Sie diejenigen Funktionen aus, die Sie zur Steuerung Ihres Prozesses benötigen.

Aktivierte Funktionen sind in der Anzeige mit GROSSBUCHSTABEN dargestellt.

Тур	Parameter, veränderbar			
	gw	Grenzwert 1 ist über- schritten		
	al	Es ist eine Störung aufge- treten	Werden mehrere Funk- tionen ausgewählt, wird Relais 1 aktiv, wenn mindestens eine der Funktionen aktiv ist (logische ODER- Verknüpfung).	
Werte	se	Das Gerät befindet sich im Servicebetrieb		
	ch	Sensor-Check läuft		
	in	Die Funktion des Relais 1 ist invertiert		
	Anschliessen der Relaisausgänge		Betriebsanleitung	
Mehr Info	Einstellen der Relaisfunktionen		Betriebsanleitung	
	Einstellen der Grenzwerte		Betriebsanleitung	

3.6.10 Option: >Relais 2<

Einstellen derEinstellen der Funktionen für Relais 2. Diese Einstellung geschieht analogRelaisfunktionen 2Relais 1 (\rightarrow Kapitel 3.6.9). Der Vorgabewert für Relais 2 ist AL.

3.6.11 Option: >Check Inter.<

Intervall für automatischen Sensor-Check einstellen Einstellen des Intervalls für den automatischen Sensor-Check. Auch bei deaktiviertem automatischem Sensor-Check kann dieser jederzeit manuell oder durch einen externen Steuereingang ausgelöst werden. Der Sensor-Check ist eine Wartungsaufgabe und muss periodisch durchgeführt werden.

Тур	Parameter, veränderbar		
	0	Automatischer Sensor-Check deaktiviert	
werte	1 20'000 h	Intervall in Stunden (Standard = 24 h)	
Mohr Info	Durchführen eines Sensor-Checks		Betriebsanleitung
	Wartungsplan		Betriebsanleitung

3.6.12 Option: >Betr.Zwang<

Automatisch in den Messbetrieb zurückkehren Einstellen der Zeit, nach der das Gerät automatisch in den Messbetrieb zurückkehrt (Betriebszwang). Dies betrifft den Fall, wenn sich das Gerät im Servicebetrieb befindet und keine Manipulationen mehr an der Tastatur gemacht werden. Mit dieser Option kann verhindert werden, dass das Messgerät für beliebig lange Zeit im Servicebetrieb verweilt, wo kein relevanter Messwert/Grenzwert ausgegeben werden kann.

Тур	Parameter, veränderbar		
Werte	120 59'999 s	Zeit für Betriebszwang in s (Standard = 600 s)	
_	60'000	Betriebszwang ausgeschalte	t
Mehr Info	Einstellen des Servicebetriebs Kurzanleitur		Kurzanleitung

3.6.13 Option: >Buskoppler<

Buskoppler einstellen

Einstellen des Buskopplertyps, falls ein solcher an der seriellen Schnittstelle angeschlossen ist.

Änderungen an dieser Option werden erst nach dem Aus- und Wiedereinschalten des Gerätes wirksam!

Тур	Parameter, veränderbar		
	Keiner	Kein Buskoppler an der seriellen Schnittstel- le angeschlossen	
Werte	PROFIBUS-DP		
	PROFIBUS-FMS Typ des Buskopplers		
	INTERBUS		
	Buskoppler		Kapitel 2.5.2
Mehr Info	Einstellen des Buskopplers als Steuerung		Kapitel 3.6.2
	Verwenden eines Buskopplers		Kapitel 4

3.6.14 Option: >Zugriffscode<

Einstellen des Zugriffscodes für die Aktivierung des Servicebetriebs. Dieser Vorgang ist in der Betriebsanleitung ausführlich beschrieben (\rightarrow Betriebsanleitung: "Einstellen des Zugriffscodes").

3.6.15 Option: >Einheit<

Kundenspezifische Einheit einstellen Einstellen der Zeichenfolge für eine kundenspezifische Masseinheit. Es können maximal vier Zeichen definiert werden, welche dann im Messbetrieb mit dem Messwert angezeigt werden.

Тур	Parameter, veränderbar	
Werte	4 beliebige Zeichen, Standard = NTU	
Mehr Info	Einstellen der Linearisierung	Kapitel 3.7

3.6.16 Option: >Grundeinstell<

Werkseinstellungen laden Wiederherstellen der Werkseinstellungen aller Parameter. Wenn Sie diese Funktion ausführen, werden Ihre selbsterstellten Einstellungen überschrieben. Deshalb findet eine Sicherheitsabfrage statt, die Sie bestätigen müssen.

Тур	Funktion		
Morto	Nicht laden	Die Werkseinstellungen werden n hergestellt.	icht wieder-
Laden Ihre Einstel stellungen		Ihre Einstellungen werden durch o stellungen überschrieben.	die Werksein-
Mehr Info	Überblick über die Optionen und Werkseinstellungen Kurzanleitur		Kurzanleitung

3.7 Menü: *LINEAR 90{25}*

Mit dieser Funktion können Sie eine eigene Linearisierungskurve mit bis zu 8 Stützwerten definieren. Dadurch kann die Messung an produktspezifische Anforderungen angepasst werden. Auch eine Skalierung (z.B. für Einheitenumrechnung) ist mit dieser Funktion möglich.

Die Linearisierungskurve besteht aus 8 Stützwerten mit Soll- und Ist-Werteingabe. Zwischen den einzelnen Stützwerten wird linear interpoliert.

Nach dem Anpassen der Linearisierung muss der Messbereich angepasst werden!

Linearisierungskurve erstellen Das DualScat Ex wird im Werk mit Formazin über den gesamten Messbereich kalibriert.

> Die Linearisierungskurven können verwendet werden, um eine von Formazin unterschiedliche Bezugsgrösse (z.B. ppm SiO₂) zu programmieren. Dazu müssen Sie im DualScat Ex zwei bis acht Stützwerte (0 .. 7) innerhalb des gewünschten Messbereichs (schraffierte Fläche) ausmessen. Jeder Stützwert besteht aus einem Sollwert (x) und je einem Istwert für 90° bzw. 25° (y). Je mehr Stützwerte Sie erstellen, desto genauer werden später die Messungen.

Abbildung 22: Linearisierungskurve.

Messwerte zwischen den Stützwerten werden linear interpoliert, Messwerte ausserhalb des kleinsten Stützwerts werden aufgrund der letzten zwei Stützwerte linear extrapoliert, werden aber nie kleiner als Null (B). Messwerte ausserhalb des höchsten Stützwerts werden als Überlauf angezeigt (****).

Benutzen Sie zum Erstellen einer kundenspezifischen Linearisierungskurve die Hilfstabelle im Anhang (\rightarrow Kapitel 7.1). Gehen Sie wie folgt vor:

Beispiel:

Kundenspezifisches Produkt

Ermitteln der Sollwerte für ein l	kundenspezifisches	Produkt,	welches	nicht	auf
Formazin beruht:					

	Aktion	Bemerkungen
1.	Führen Sie eine Nachkalibrierung durch.	ightarrow Betriebsanleitung
2.	Stellen Sie eine Messreihe von mindes- tens zwei, höchstens aber zehn Ver- dünnungen Ihres Produkts innerhalb des gewünschten Messbereichs zu- sammen.	
3.	Ermitteln Sie die Sollwerte Ihrer Ver- dünnungsreihe und tragen Sie diese in die Spalte "Sollwert" in der Hilfstabelle ein.	Wenn Ihnen die Sollwerte nicht bekannt sind müssen diese durch Messung in einem Refe- renzgerät ermittelt werden.
4.	Messen Sie die einzelnen Verdünnun- gen im DualScat Ex. Tragen Sie die gemessenen Werte in der Hilfstabelle in den Spalten "Istwert 90°" bzw. "Ist- wert 25°" auf der Zeile des zugehöri- gen Sollwerts ein.	Fangen Sie wenn möglich mit der grössten Verdünnung an (kleinster Messwert). Um den Fehler von Einzelmessungen zu vermeiden, messen Sie am bes- ten die einzelnen Verdünnungen mehrmals bintereinander. Set-
	Anmerkung: Die gemessenen Ist-Werte können auch direkt erfasst und in die Tabelle übernommen werden (siehe 8b). Dies wird aber auf Grund mögli- cher Toleranzen einer Einzelmessung nicht empfohlen.	zen Sie dann den Mittelwert al- ler Einzelmessungen in die Hilfstabelle ein.

Linearisierungskurve erstellen

	Aktion	Bemerkungen
5.	Aktivieren Sie das Menü *Linear*	
6.	1. Mal Taste 🖸 drücken	Hier können die Soll-Werte ein- gegeben werden.
7.	2. Mal Taste	"Manu" erscheint auf der An- zeige (Eingabe für die Ist- Werte).
8a.	Bestätigen mit Taste 🖸 "Manu"	lst-Wert kann manuell eingege- ben werden.
		Eingabe mit der Taste 回 bestä- tigen.
8b.	Bestätigen mit Taste 🖸 "Auto"	Momentan gemessener Mess- wert wird angezeigt.
		Durch bestätigen der Taste wird der Ist-Wert übernommen.

	Aktion	Bemerkungen
9.	Die Eingabe für einen Stützwert ist ab- geschlossen.	
	Zur Eingabe der weiteren Stützwerte Vorgang wiederholen.	

Skalierung des Soll nur eine Skalierung des Messwertes vorgenommen werden, dann muss dies mit Hilfe einer Linearisierungskurve realisiert werden. Da eine Skalierung immer linear ist, genügen zwei Punkte: der Nullpunkt und der maximale Messwert.

Bespiel:

Die Einheit "NTU" soll auf die Einheit "EBC" umgestellt werden. Skalierungsfaktor beträgt in diesem Fall 0.25.

	Aktion	Bemerkungen
1.	Im Menü Konfiguration die Einheit auf EBC umstellen.	Kapitel 3.6.15
2.	Aktivieren Sie das Menü >Linear90<.	
3.	Stellen Sie unter "Tab 0" ein:	Nullpunkt
	Soll = 0 lst = 0	
4.	Stellen Sie unter "Tab 1" ein:	Maximaler Messwert
	Soll = (2'200*0.25) = 550.0 lst = 2'200	
5.	Wiederholen Sie die Schritte 3 und 4 für das Menü > Linear25<.	
6.	Versetzen Sie das Gerät in Normalbe- trieb.	

Skalierung des Messwerts einstellen

3.8 Menü: *MESSBEREICHE 90{25}*

Anpassen der Messbereiche Anpassen der Messbereiche. Sie können mit den Tasten ⊡ und ⊡ alle acht Messbereiche durchsteppen (beim Zweiwinkelgerät jeweils für den 90° bzw. 25° Messwinkel separat). Die Anzeige bedeutet:

* = nur beim Zweiwinkelgerät von Bedeutung

Ein Messbereich besteht aus zwei Werten in der eingestellten Einheit. Massgebend für die Empfindlichkeit ist die obere Grenze. Beachten Sie, dass der erste Messbereich (MB1) ist immer der höchste (un-

Beachten Sie, dass der erste Messbereich (MB1) ist immer der hochste (unempfindlichste) sein muss und die Empfindlichkeit mit steigenden Messbereichsnummern zunimmt.

Benutzen Sie nachstehende Tabelle für die Planung der Messbereiche. Vergessen Sie nicht, die neuen Messbereiche in der Betriebsanleitung zum Gerät nachzutragen.

Messbereich	untere Grenze	obere Grenze	Bemerkungen
MB1			höchster (unempfindlichster) Messbereich
MB2			
MB3			
MB4			
MB5			
MB6			
MB7			
MB8			tiefster (empfindlichster) Messbereich

Tabelle 2: Planung der Messbereiche.

Sollten Sie die automatische Messbereichsumschaltung aktiviert haben (Standardeinstellung) und weniger als acht Messbereiche benötigen, setzen Sie die unbenutzten Messbereiche auf den Wert

	MB?	[EBC]
>	0.000	- 0.000<

3.9 Menü: * FEHLER HISTORY *

```
Einsehen von Er-
eignissen
```

Einsehen von chronologisch aufgezeichneten Ereignissen. Die Fehler-History arbeitet nach dem First-in-first-out-Verfahren, was bedeutet, dass das letzte aufgetretene Ereignis jeweils das erste in der Liste ersetzt. Die Anzeige bedeutet:

Ereignis aufgetreten ist

Es werden vier Systeminformationen (I01 .. I04), die letzten zehn Betriebsfehler (F01 .. F10) sowie die letzten fünf Systemfehler (S01 .. S05) aufgezeichnet. Die Fehler-History kann durch einen Servicetechniker gelöscht werden (Option "- History -").

3.10 Menü: *SYSTEM INFO*

3.10.1 Information: -Betriebstd.-

Betriebszeit Einsehen der Betriebszeit des Photometers seit Erstinbetriebnahme im Werk. Standzeiten (Gerät spannungslos) sind in dieser Zeit nicht enthalten.

3.10.2 Information: -Version-

Versionsnummer Einsehen der Versionsnummer der eingesetzten Software. Die Software befindet sich in einem EPROM in Innen des Photometers und kann nur durch einen Servicetechniker ausgewechselt werden (Update).

3.10.3 Information: -Ger. Nr.-

Gerätenummer Einsehen der Gerätenummer des Photometers. Das Bedienungsgerät hat eine separate Gerätenummer (→ Betriebsanleitung). Diese Nummern sind wichtig bei Rückfragen an den Kundendienst.

3.10.4 Information: -Mess90{Mess25}-

Einsehen der aktuellen Messwerte. So können Sie Kontrollmessungen im Servicebetrieb durchführen, ohne die Signalausgänge (Messwert/Relais) zu beeinflussen.

3.10.5 Information: - Innentemp.-

Temperatur im Elektronikteil Einsehen der Temperatur im Elektronik-/Optikteil des Photometers. Diese darf 60 °C nicht überschreiten. Andernfalls überprüfen Sie, ob Mediums- und Umgebungstemperatur innerhalb des spezifizierten Bereichs liegen (→ Betriebsanleitung).

3.10.6 Information: -LED-Temp.-

Temperatur der Lichtquelle Einsehen der Temperatur der Lichtquelle im Photometer (LED = Light Emitting Diode). Diese liegt normalerweise bei 40 °C und darf 60 °C nicht überschreiten. Andernfalls überprüfen Sie, ob Mediums- und Umgebungstemperatur innerhalb des spezifizierten Bereichs liegen (→ Betriebsanleitung).

3.10.7 Information: -Max-Temp.-

Höchste gemessenen Temperatur der Lichtquelle im Photometer
 ne Temperatur der
 Lichtquelle
 Einsehen der höchsten gemessenen Temperatur der Lichtquelle im Photometer
 seit der ersten Werksinbetriebnahme. Überschreitet diese einen Wert von
 60 °C muss das Photometer mit einer Kühlung versehen werden. Nehmen Sie
 in diesem Fall Kontakt mit dem Kundendienst auf (→ Betriebsanleitung).

3.11 Menü: *ABGLEICH INFO*

3.11.1 Information: Nachk1 .. Nachk6

der Einsehen der Korrekturen der letzten sechs Nachkalibrierungen (\rightarrow Kapitel 3.3 sowie Betriebsanleitung). Die Anzeige bedeutet:

* Zwei Werte nur beim Zweiwinkelgerät. Der korrigierte Wert bezieht sich immer auf die werkseitige Ur-Kalibrierung.

Korrekturen der Einsehe letzten Nachkalibrierung

3.11.2 Information: -Moni/Mess 90{25}-

Interner kontrollwert Einsehen des internen Kontrollwerts für die Werkskalibrierung des 90° bzw. 25° Messwerts. Der angezeigte Wert entspricht dem Signalverhältnis von Referenz- zu Messdetektor bei 1 Einheit der Ur-Kalibrierung (Standard = NTU).

3.12 Menü: *FEUCHTE INFO*

3.12.1 Information: -Feuchtewert-

Einsehen des aktuellen Messwertes der Feuchtemessung.

3.12.2 Information: -Feuchtgrenzw.-

Einsehen des für die Feuchtemessung definierten Grenzwerts. Beim unterschreiten dieses Grenzwerts wird im Messmodus der Fehler "Dichtheit" angezeigt.

3.12.3 Information: -Feuchtabgl-

Abgleich der Feuchtemessung durch SIGRIST Servicetechniker und Werkspersonal.

3.12.4 Information: -Feuchtabgl- (Wert)

Einsehen des Abgleichwertes der Feuchtemessung.

4 Verwendung eines Buskopplers

4.1 Einführung

Mit einem Buskoppler können Sie das Messgerät an einem Computer betreiben bzw. in einem Leit- oder Steuersystem integrieren. Dazu müssen folgende Voraussetzungen erfüllt sein:

- Ihr Computer bzw. das Leit- oder Steuersystem muss mit einem der Bussysteme Modbus, Profibus DP, Profibus FMS oder Interbus kompatibel sein.
- Ihr Computer bzw. das Leit- oder Steuersystem muss über eine Software verfügen, welche die vom Messgerät bereitgestellten Daten in geeigneter Weise verarbeiten kann. SIGRIST kann hierfür keinen Support anbieten.
- Das Bedienungsgerät muss mit dem entsprechenden Buskoppler mit Ihrem Bussystem verbunden sein (→ Kapitel 2.5.2 bzw. 2.5.3). Für den Betrieb mit Modbus ist anstelle eines Buskopplers ein SITRA (BUS-Transmitter und Netzgerät) erforderlich (→ Kapitel 2.5.4).

Das separat erhältliche White Paper (Dokumentennummer 10662D) informiert ausführlich über die Bussysteme und deren Verwendung.

Die für die Programmierung erforderliche Adresstabelle finden Sie - nach Bussystem getrennt - in den folgenden Kapiteln.

4.2 Modbus

Es dürfen nur die folgenden dokumentierten Adressen verwendet werden. Das Schreiben von Daten in nicht dokumentierte Adressen kann zur Funktionsuntüchtigkeit des Geräts führen.

		_,			
			typ		
0x2000	R	4	Float	Messwert 90	Normalbetrieb: Messwert in ein- gestellter Einheit Servicebetrieb: Je nach Paramet- rierung letzter Messwert
0x2004	R	4	Float	Messwert 25	oder -0.5 Abgleich: aktueller Abgleichs- wert Fehler: -1.0 (ausser bei Fehler StromAusgang)
0x202C	R	4	Long	BetriebsStd	Betriebsstunden in Minuten

Adresse | R/W | Bytes | Daten- | Beschreibung | Interpretation

Adresse	R/W	Bytes	Daten-	Beschreibung	Interpretation	
			typ			
0x2030	R	1	Byte	Fehler	Fehlermeldungen:	
					00: KeinFehler	
					01: MesswertErfassung	
					02: StromAusgang1	
					03: StromAusgang2	
					04: SystemCheck	
					05: Dichtheit	
					06: LampenAusfall	
					0710: Nicht verwendet	
					1115: Systemfehler	
0x4004	R/W	1	Byte	Integration	0: 1 Sekunde	
					1: 10 Sekunden	
					2: 60 Sekunden	
					3: 600 Sekunden	
0x4005	R/W	1	Byte	Betriebsmo-	0: Normalbetrieb	
				dus	1: Sensor-Check starten	
					2: Servicebetrieb	

se	R/W	Bytes	Daten-	Beschreibung	Interpretati
----	-----	-------	--------	--------------	--------------

4.3 **Profibus DP**

Gerät:	NT30-DPS
IDENT Nummer:	0x08EA
GSD Datei:	HIL_08EA.GSD
Adressierungsmode:	Byteadressen
Speicherformat (Wort-Module):	MSB/LSB

Ein- gangs- adres- se	Aus- gangs- adresse	Modulna- me	Funktion	Werte	Siehe auch
00		1 byte in- put con (0x90)	Betriebsart	 0: Normalbetrieb 1: Sensor-Check starten 2: Servicebetrieb 	Betriebs- anleitung
01		1 byte in- put con (0x90)	Integrations- zeit	0: 1 s 1: 10 s 2: 60 s 3: 600 s	Kapitel 3.6.7
02		1 word in- put con (0xD0)	Intervall für Sensor- Check	0: Check deaktiviert 1 20'000 [h]	Kapitel 3.6.11
04		1 word in- put con (0xD0)	Zeit für Be- triebszwang	0: deaktiviert 12060'000 [s]	Kapitel 3.6.12
06		1 byte in- put con (0x90)	Live	Zyklischer Wechsel zwi- schen $0 \rightarrow 1 \rightarrow 0$ zur Funktionsüberwachung (max. 2.5s)	

Ein- gangs- adres- se	Aus- gangs- adresse	Modulna- me	Funktion	Werte	Siehe auch
07		1 byte in- put con (0x90)	Fehler	0: Kein Fehler 1: Messen 2: Strom 1 3: Strom 2 4: SensorCheck 5: Dichtheit	Betriebs- anleitung
08		2 word in- put con (0xD1)	Messwert 90°	0 2′000'000 [10 ⁻³ NTU]	
12		2 word in- put con (0xD1)	Messwert 25°	0 2′000'000 [10 ³ NTU]	
16		1 word in- put con (0xD0)	Nachkalib- rierwert 90°	Korrekturfaktor in ⁰ / ₀₀ 1'000 = Werkskalibrie- rung	Betriebs- anleitung
18		1 word in- put con (0xD0)	Nachkalib- rierwert 25°	Korrekturfaktor in ⁰ / ₀₀ 1'000 = Werkskalibrie- rung	Betriebs- anleitung
	00	1 byte out- put con (0xA0)	Betriebsart	 0: Normalbetrieb 1: Sensor-Check starten 2: Servicebetrieb 	Betriebs- anleitung
	01	1 byte out- put con (0xA0)	Integrations- zeit	0: 1 s 1: 10 s 2: 60 s 3: 600 s	Kapitel 3.6.7
	02	1 word output con (0xE0)	Intervall für Sensor- Check	0: Check deaktiviert 1 20'000 [h]	Kapitel 3.6.11
	04	1 word output con (0xE0)	Zeit für Be- triebszwang	0: deaktiviert 12060'000 [s]	Kapitel 3.6.12

5 Reparaturen

5.1 Allgemeine Hinweise

Externe Signalleitungen können lebensgefährliche Spannung führen, auch wenn die Spannungsversorgung zum Bedienungsgerät unterbrochen ist. Stellen Sie vor dem Öffnen des Bedienungsgeräts sicher, dass keine der angeschlossenen Leitungen unter Spannung steht.

- Beachten Sie vor dem Ausführen von Reparaturen die Sicherheitshinweise in der Betriebsanleitung.
- Halten Sie die Reihenfolge der aufgeführten Arbeitsabläufe genau ein.
- Verwenden Sie beim Auswechseln von Teilen ausschliesslich Originalersatzteile die in der Ersatzteilliste aufgeführt sind (→ Betriebsanleitung).
- Beachten Sie bei Rücksendungen die Hinweise in der Betriebsanleitung betreffend Verpackung und Transport.

5.2 Auswechseln der Folientastatur am SIREL SMD

Die Folientastatur wird zusammen mit dem ganzen Deckel ersetzt. Die Ersatzteilnummer finden Sie in der Betriebsanleitung.

	Aktion	
1.	Unterbrechen Sie die Spannungsversorgung zum SIREL SMD, und öffnen Sie den Deckel.	ightarrow Betriebsanleitung
2.	Ziehen Sie den Stecker zur Folientastatur (1) nach rechts ab, und lösen Sie die Schrauben (2) mit einem Kreuzschlitz-Schraubenzieher.	2
	Der Deckel kann nun abgenommen und durch einen neuen ersetzt werden.	
3.	Schrauben Sie den neuen Deckel an, und stellen Sie die Verbindung zur Folientastatur (1) wieder her.	
4.	Schliessen Sie das SIREL SMD und nehmen Sie das Gerät in Normalbetrieb.	

5.3 Auswechseln des Bedienungsgeräts SIREL SMD/ Ex

Das Bedienungsgerät SIREL SMD und allfällige Zusatzkomponenten dürfen nicht in explosionsgefährdeten Bereichen installiert und betrieben werden.

Das Bedienungsgerät kann ohne weitere Massnahmen bzw. Umprogrammierung ausgewechselt werden. Informationen zum Anschliessen des neuen Bedienungsgeräts finden Sie in der Betriebsanleitung.

Beachten Sie, dass Bedienungsgerät und Photometer mit verschiedenen Seriennummern gekennzeichnet sind (\rightarrow Betriebsanleitung). Tragen Sie entsprechende Hinweise in Ihren Unterlagen nach.

	Aktion	
1.	Unterbrechen Sie die Spannungsversorgung zum SIREL SMD/ Ex, und stellen sie sicher, dass alle Signalleitungen spannungslos sind.	ightarrow Betriebsanleitung
2.	Öffnen Sie das SIREL SMD/ Ex, und entfer- nen Sie alle elektrischen Verbindungen.	ightarrow Betriebsanleitung
3.	Montieren Sie das neue SIREL SMD/ Ex an die dafür vorgesehene Stelle.	ightarrow Betriebsanleitung
4.	Stellen Sie die elektrischen Verbindungen zum neuen SIREL SMD/ Ex her.	\rightarrow Betriebsanleitung
5.	Nehmen Sie das Gerät in Normalbetrieb.	ightarrow Betriebsanleitung
6.	Tragen Sie in Ihren Unterlagen die Serien- nummer des neuen SIREL SMD/ Ex nach.	

5.4 Auswechseln des Steuerkabels

Das Steuerkabel muss folgende Bedingungen erfüllen:

Aussendurchmesser:	7 9mm
Adern:	Je nach Distanz Bedienungsgerät–Photometer (\rightarrow Betriebsanleitung). Standard ist 0.75 mm ²
Aufbau:	paarverseilt bei normaler Umgebung abgeschirmt bei gestörter Umgebung
Isolationsmaterial:	den Umgebungsbedingungen (Temperatur/chemische Beständigkeit) angepasst

Das Steuerkabel ist auf der Seite des Photometers mit einer Kabeldurchführung fest montiert, im Innern jedoch auf Klemmen geführt.

(Sig		Aktion	
Steuerkabel aus- wechseln	1.	Unterbrechen Sie die Spannungsversorgung zum Bedienungsgerät, und stellen Sie sicher, dass alle Signalleitungen spannungslos sind.	
	2.	Öffnen Sie das SIREL SMD/ Ex, und trennen Sie das 4-polige Steuerkabel von den Klem- men ab (→ Betriebsanleitung).	
		Lösen Sie die Kabelverschraubung am SIREL SMD/ Ex, und ziehen Sie das Steuerkabel heraus.	
		O Als Steuerkabel wird das Kabel zwischen Photometer und Bediengerät bezeichnet.	
	3.	A Warten Sie 10 Minuten bevor Sie weiter- fahren.	Abkühlen des Geräts auf gefahrloses Temperatur- niveau und Abbau der Restladungen.
	4.	Lösen Sie die Inbusschraube A um ca. ½ Umdrehung und ziehen Sie den Sicherungs- ring weg.	
	5.	Lösen Sie die Mutter A soweit, bis Sie den Sicherungsbügel leicht wegklappen können und entfernen Sie die Verschlussklammer und danach das Gehäuse.	
	6.	Verdrehsicherung (1) und die Zugentlastung (2) entfernen.	

	Aktion			
7	Hinterteil der Kabelvers kantschlüssel herausdre	AGE -		
8.	Kabelbinder durchschne aus den Klemmen entfe	eiden und Ka rnen.	abelenden	· ·
	Kabel aus dem Gehäuse	e ziehen.		
9.	Kabelverschraubung in auf das neue Kabel stec	folgender Re ken:	eihenfolge	b a
	a) Hinterteil b) Druckhülse c) Gummimuffe	c -		
	Danach Kabelende in da	as Gehäuse	einführen.	
10.	Kabelverschraubung los	e hineindrei	nen.	
11.	Neues Kabel an-	Kabel-Nr.	Klemme	
	schliessen	1	orange	
		2	blau	
		3	weiss	
		4	schwarz	
12.	Kabel mit Kabelbinder a ren.	n Klemmen	print fixie-	
13.	Kabel nachziehen und K über den Sechskant fes	labelverschr t anziehen.	aubung	
14.	Verdrehsicherung und Z anbringen.	Siehe Punkt 6		
15.	Gehäuse wieder aufsetz	zen		
	A Kabelverschraubung chen Seite der Montage men.	g muss mit platte übere	der fla- einstim-	

	Aktion	
16.	Setzen Sie die Verschlussklammer auf, klap- pen Sie den Sicherungsbügel zu und ziehen Sie die Mutter A fest.	
17.	Setzen Sie den Sicherungsring auf und ziehen Sie die Inbusschraube A fest.	A
18.	Stellen Sie die Spannungsversorgung zum SIREL SMD/ Ex wieder her, und nehmen Sie das Gerät in Normalbetrieb.	

5.5 Auswechseln des Photometers

Durch das Auswechseln des Photometers gehen alle kundenspezifischen Einstellungen verloren. Sie müssen diese gegebenenfalls wiederherstellen. Bestimmte Einstellungen, wie z.B. spezielle Messbereiche, können jedoch nur von einem Servicetechniker bzw. im Werk eingestellt werden.

Wird das Photometer zur Reparatur gesandt, sollte nach Möglichkeit die dazugehörende Kontrolleinheit mitgeliefert werden. Ist dies nicht möglich (z.B. wenn die Kontrolleinheit mehrfach verwendet wird) dann müssen die Werte der Kontrolleinheit durch einen Servicetechniker neu aufgenommen werden.

	Aktion
1.	Unterbrechen Sie die Spannungsversorgung zum Bedienungsgerät, und stellen sie sicher, dass alle Signalleitungen spannungslos sind.
2.	Öffnen Sie das Bedienungsgerät, und trennen Sie das 4-polige Steuer- kabel von den Klemmen ab (→ Betriebsanleitung).
3.	Stellen Sie sicher, dass die Produkteleitung leer ist, und bauen Sie das Photometer aus.
4.	Bauen Sie das neue Photometer in die Produkteleitung ein, und stellen Sie die elektrische Verbindung zum Bedienungsgerät her.
5.	Schliessen Sie das Bedienungsgerät, und machen Sie eine vollständige Inbetriebnahme gemäss Betriebsanleitung.

6 Herstellen einer Formazin-Standardsuspension

Infolge eines kleinen Restanteils an unverbrauchtem Hydrazinsulfat (Spuren von einigen ppm), sind hohe Konzentrationen über 400 NTU bei häufigem Hautkontakt schädlich. Es wird empfohlen, Berührung mit der Haut zu vermeiden und nach dem Arbeiten die Hände zu waschen.

Um die Reproduzierbarkeit des Formazin-Standards zu gewährleisten, sind Vorsichtsmassnahmen nötig. Im folgenden sind die Vorschriften aufgeführt, die sich in der Firma SIGRIST über Jahre bewährt haben. Sie erfüllen die ISO Norm 7027, deutsche Übersetzung als DIN EN 27027 aus dem Jahre 1999.

Bitte beachten Sie folgende Hinweise zur Handhabung:

- Halten Sie die vorgeschriebenen Reinheitsgrade genau ein.
- Arbeiten Sie nur mit Geräten, die mit destilliertem Wasser gereinigt wurden.
- Bewahren Sie destilliertes Wasser nicht zu lange auf, sondern ersetzten Sie dieses in kurzen Zeitabständen.
- Streng genommen schreibt die Norm eine Verdünnung auf 400 FTU vor. Aus Gründen der Haltbarkeit ist es jedoch ratsam, erst dann auf 400 FTU (oder tiefer) zu verdünnen, wenn die betreffenden Konzentrationen benötigt werden.
- Bewahren Sie die Stammsuspension und deren Verdünnungen vor Licht geschützt bei etwa 15 °C auf.
- Die Haltbarkeit der Suspension ist beschränkt. Bei obigen Lagerbedingungen gelten folgende Faustregeln:

Stammsuspension	4'000 NTU	3 Monate haltbar
Verdünnung	400 NTU	3 Wochen haltbar
Verdünnung	40 NTU	3 Tage haltbar

1

Benötigte Chemikalien

	Chemikalie	Bemerkungen
1.	Hexamethylentetramin (Urotropin, Methenamin)	Reinheitsgrad: > 99% (z.B. p.a. oder puriss.)
2.	Hydrazinsulfat Giftig beim Berühren oder Verschlucken und möglicherweise krebser- regend!	Reinheitsgrad: > 99% (z.B. p.a. oder puriss.)
3.	Reinstwasser	Hochwertiges, zweifach destilliertes Wasser, trübungsfrei (< 0.08 NTU, evtl. durch 0.1µm Porenfilter filtriert)

Ansetzen der Standardsuspension

	Aktion	Beschreibung
1.	Herstellen von Lösung 1	1.000 g Hydrazinsulfat pro 100 ml Reinst- wasser vollständig lösen
2.	Herstellen von Lösung 2	10.00 g Hexamethylentetramin pro 100 ml Reinstwasser vollständig lösen
3.	Bildung der Suspension	Lösung 1 und Lösung 2 mischen
4.	Standzeit abwarten	24 Stunden bei 25 \pm 1 $^{\rm o}{\rm C}$ lagern Aufgrund der besseren Reproduzierbarkeit ist die Temperaturangabe enger gefasst als in der ISO-Norm
5.	Stammsuspension verwenden	Die so hergestellte Stammsuspension hat ei- ne Trübung von 4000 FTU = 4000 NTU = 1000 EBC

7 Anhang

7.1 Hilfstabelle zur Ermittlung der Stützwerte

Stützwert	Sollwert	Istwert (Anzeige im DualScat Ex)		
Nr.		90°	25°	
0				
1				
2				
3				
4				
5				
6				
7				

8 Index

С

ch	18
Computer	28

D

Dauerlicht	14
Deckel, auswechseln	31
Dichtheit	27
DIN EN 27027	36
Dokumentationen, weitere	. iii

Ε

Einheit, kundenspezifische	20
Einheitenumrechnung	20
Elektronik	1
Empfindlichkeit	24

EPROM25 Ersatzteilliste31
F
F1/F2
G Gehäuse 1
Gerätenummer, Photometer 25 Glättung des Messwerts 16 Grenzwerte
H
Haltbarkeit, Formazin
1
in
K
Kabellange, standard19Keiner19Kontrolleinheit35Kontrollwert27Korrekturen, im Messwert26Kühlung1, 26
L
Laden
M Maaaainhait kundanana-ifiaaha 20
Menüs

Messbereich, einstellen24
Messbereich, extern steuern4
Messbereich, Signalausgänge3
Messbereiche 12, 24
Messbereichsausgänge, testen14
Messbereichsumschaltung17
Messbereichsumschaltung,
Schwellwert17
Messbereichswahl, externe4
Messbetrieb, automatischer19
Messlicht, testen14
Messwert, Schwankungen 16
Messwertausgang7
Messwertausgang, Maximalwert 15
Messwertausgang, Störung 16
Messwertausgang, Strombereich 15
Messwertausgang, testen13
Messwertausgangs, im Service16
Messwerte, Servicebetrieb 26
Modbus
MODBUS- Schnittstelle11

N

Nachkalibrieren	12
Nachkalibrierung	26

0

-	
Optionen	12

Ρ

Photometer, Aufbau	1
Photometer, auswechse	eln35
Printschalter	2, 4, 5, 6, 7
Printschalter S1	3
Printschalter S2	7
Profibus DP	28, 29
Profibus FMS	
PROFIBUS-DP	
PROFIBUS-FMS	
Programmierung	

R

Relais, Funktionen	18
Relais, testen	13
Reparaturen	31

S

S1	.4,5,6
S1/S2	2
S2	6, 7
Schalter, Print	2
Schnittstelle, serielle	19
Schwankungen, Messwert.	
se	
Sensor-Check	

Sensor-Check, automatischer ´	18
Sensor-Check, fernauslösen	. 5
Sensorkopf	. 1
serielle Schnittstelle	19
SIBUS	11
Sicherungen	. 2
Signalausgänge	. 7
Signalausgänge, testen	14
Signaleingänge	. 7
SITRA	28
Skalierung2	20
Skalierung, einstellen	23
Skalierungsfaktor	23
Slavenummer	. 2
Software, Version	25
Sollwert	21
Sprache, einstellen	14
Stammsuspension	36
Steuergerät, auswählen	15
Steuerkabel	32
Steuerkabel, auswechseln	32
Steuerung, extern	15
Stützwerte 20, 2	21
Symbole, Bedeutung	. iii
Systemfehler 2	25
Systeminformationen	25

T

Tastatur, bei zwei	
Bedienungsgeräten	. 7
Temperatur	26
Temperatur, Lichtquelle	26
Testen, Handbetrieb	13
Texte, Sprache	14

U

Überlauf	21
Umgebungstemperatur	26
Ur-Kalibrierung 26,	27
V	
Verbindungskabel	6
Verdünnungen	36

	^o O
Verschlussklammer	1
Versionsnummer, Software 2	5
Vorgabewerte1	2

W

Werkseinstellungen, wiederherstellen2	0
Z	9
Zugriffscodes, ändern	6